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Significance of reef sea temperature

• Thermal environment
– Sea temperature is a control on growth rate of 

reef-building corals (e.g., Cantin et al. 2010)

– Extremes can cause bleaching and mortality

– Can play a role in spawning & settlement success

• As a proxy for studying nutrient fluxes
– Upwelling (T/N,P relationships below thermocline, 

e.g., Leichter et al. 2003, Hitchcock et al. 2005)

– Cross-shore flows (land sources)



Reef Sea Temperature and Climate

• Our current understanding of the global air-
sea climate system comes from coupled 
numerical models at regional scales, using 
satellite data at kilometer scales and greater.

• To downscale long-term forecasts to coral reef 
ecosystem impacts means accounting for 
physical processes at all scales – from global 
systems to individual coral communities.
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Reef Sea Temperature Variability

• Rapid cooling events in summer can often be 
identified with storm-induced surface waves 
and storm surge (Manzello et al. 2007)

• Higher than normal variability can also be 
coincident with passage of eddies offshore 
(Gramer et al. 2009), and with shoaling of 
internal waves (e.g., Davis et al. 2008).

• To characterize these events in the record, we 
must account for all sources of ocean heating.



Heat budget

• Air-sea fluxes:
– Turbulent – TOGA-COARE 3.0a (Fairall et al. 2003)

– Radiative – NCEP NARR (32km reanalysis, Mesinger et al. 2006)

• Kilometer-scale advection: sources of estimates
– Gulf of Mexico HYCOM (4km res., 2003-2010)

– Florida Keys HYCOM (~900m res., 2008)

• Sub-kilometer scale advection

(Only parameterized in kilometer-scale ocean models)
– Wind- and swell-driven surface transport? (Ardhuin et al. 2009)
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Results – air-sea and km-scale only

Air-sea fluxes and
kilometer-scale 
advection – even with 
a simple sub-kilometer 
scale wave-driven 
term – cannot 
accurately predict 
seasonal variability



Horizontal Convection – thermal siphon

• Air-sea flux and km-scale heat advection alone 
do not model variability well: is there also a 
smaller-scale oceanographic process at work?

Chubarenko, 2010

1/25° HYCOM sea 
temperature: Jan ‘10 
NGDC bathymetry

Monismith et al., 2006



Results (various models, with and without siphon)

Air-sea fluxes and the 
thermal siphon alone can 
model seasonal 
variability well in most 
years.  Surprisingly, 
larger-scale cross-shore 
advection plays little role 
in a seasonal model.



Results – reef crest sites

In modeling interannual 
variability, however, 
kilometer-scale advection, 
if modified by the thermal 
siphon, does better job at 
the reef crest.

1 2 3 4 5 6 7



Results – low-relief areas
• Two Upper Keys thermistor sites at similar depths of 4-5m, one on a 

mid-Channel flat, the other a back-reef promontory (magenta and 
cyan stars in bathymetry map below): in the cold snap of 2010, the 
same air-sea forcing brought very different responses between the 
two sites – the thermal siphon only being able to moderate sea 
temperature variability effectively at the higher-relief site (magenta).

Thermistor data, courtesy of Dr. Diego Lirman, U. Miami



Future Work

• Apply heat budget to analyze higher-frequency 
(weekly to diurnal period) variability.

• Model extreme events (e.g., upwelling) not well 
explained by the current heat budget

• Adapt the heat budget as a management tool, 
recognizing patterns in physical data likely to 
impact effective management of reef ecology.
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Background - SEAKEYS

– C-MAN / SEAKEYS monitoring stations
– At sites on the reef crest (8km offshore) and near shore

– Continuous long-term hourly records (>20 years)

– Sea temperature, meteorology, and in some cases salinity, 
tide depth, surface and sub-surface light, and other variables

– Quality control procedures applied to most variables

– Hourly sea temperature record
– Energetic variability at multiple periodicities: 6- and 8-hour, 

M2 tidal, diurnal, inertial (28h), seasonal, interannual trends

– Strong mean squared coherence with air temperature at 
diurnal, seasonal, 4-, 12-, and 80-day periodicities

– Occasional periods of very low diurnal coherence
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Sea temperature spectrum

12.4h tidal

24h = tide + insolation

8h, 6h (related

to diurnal)

28h inertial

365d

183d - tropical

Oceanographic and air-sea processes at a range of time/space scale



Time-dependent spectrum

Energy in reef processes bleeds between time scales!



Initial Motivation – June 2006 example
Hourly sea temperature, Tsea, 

oC

µ3d ( σ1d (Tsea) )

3-day average wind [kts]



June 2006 – cyclonic chlorophyll features

June 4th

June 7th

June 6th

June 8th

Molasses

Molasses

Molasses

Molasses



Heat budget
• Sea temperature variability

– How much is forced by direct air-sea flux? 
Horizontal mixing and advection? Vertical mixing 
and upwelling (winds, eddies, internal waves)?

Q0 = γQSW + QLW + QSH + QLH + QRH

γ = 1 – Ab⋅τPAR⋅(1– τPAR), τPAR=exp(-Kd
PAR⋅h⋅sec(θ)) 

uf = (α⋅g⋅ h⋅H0)1/3,
H0 = Q24hSMA/ρCp .



Heat Budget - Results



Horizontal Convection – thermal siphon

• Air-sea flux and km-scale heat advection alone 
do not model variability well: is there also a 
smaller-scale oceanographic process at work?

Chubarenko, 2010
Lidz et al., 2006

Monismith et al., 2006



Cross-shore temperature profile –
Gulf of Mexico HYCOM (May 2008)



Cross-shore temperature profile –
Florida Keys HYCOM (May 2008)



Cross-shore along-shore velocity –
Florida Keys HYCOM (May 2008)



Monthly climatology from literature 
and current work – air-sea fluxes only



Monthly climatology – with thermal siphon



Weekly climatology – with thermal siphon


